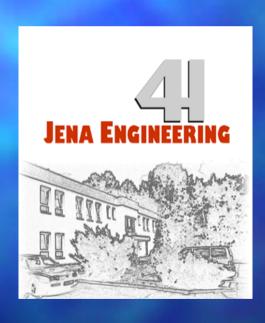


Scientific Cooperation:

4H FerryBox

Automatic and remote-controlled measurements for Ships of opportunity, with special aspects to antifouling and data quality

Tobias Boehme
-4H- JENA engineering GmbH


Contents

- Company profile
 - Marine measuring techniques
- 4H-FerryBox
 - Concept
 - New data system
 - Interfaces
 - FerryBox "family"
 - Applications
- Summary

Company profile

Windtunnel techniques

Optical inspection techniques

Optical devices

Marine measuring techniques

Marine measuring techniques

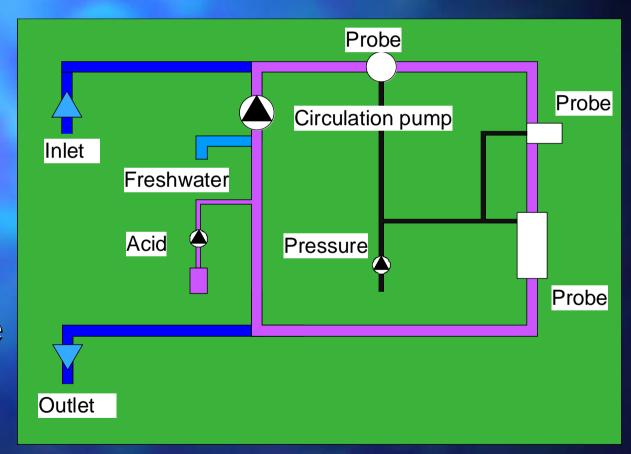
4H-FerryBox

- flow through measuring systems
- long-term in situ monitoring of rivers, estuaries, coastal zones and open sea

4H-FerryBox I
Galathea expedition

4H-FerryBox II Ferry Funny Girl

Concept of the 4H FerryBox


- Antifouling concept
- Modular and expandable
- Process controlled water system
- Data
 - Visualization
 - Transmission
 - Quality

Antifouling concept

Principle of the water system Antifouling:

- 1. Freshwater
- 2. Acid
- 3. High pressure
- 4. Chlor
- 5. Back Flash

Cleaning results

Debubbler after 2 years without manual cleaning

© BAH/AWI

Iron impurities Cleaning with oxalic acid

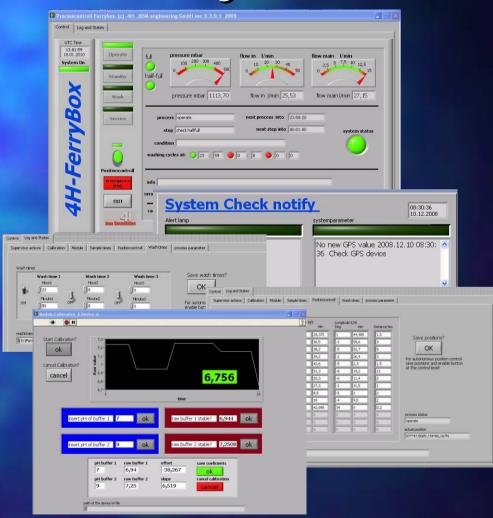
© Rijkswaterstaat

Modular and Expandable

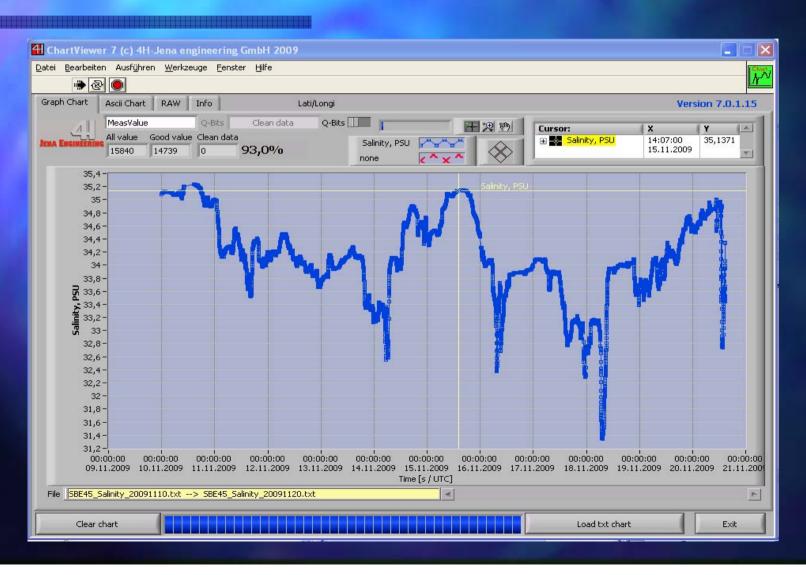
Parameters:

- ■Temperature
- ■Salinity
- ■DO
- **■**рН
- ■Algae classes
- ■Chlorophyll-a fluorescence
- ■Turbidity
- ■Nutriens
- **■**pCO2, ...

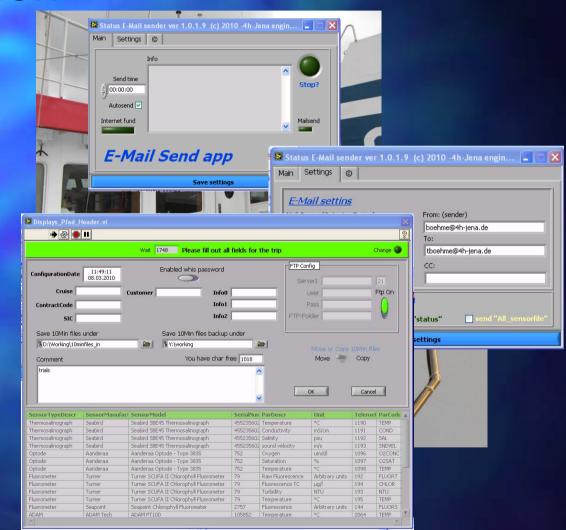
New Interfaces of devices


- RS232
- RS484
- Analoge (V, 4-20mA)
- IEEE
- Paralell Bus
- CAN, Profibus, ...

- USB (2, 3, ..)
- **LAN** (1000, 10000)
- WLAN
- **?**?


Process controlled Water system

- Datasystem based on LabVIEW
- Intuitive operation
- Soft SPS tools
- Error handling
 - Back flush, SMS,...
- Event and position controlled
- Calibration


Data Visualization

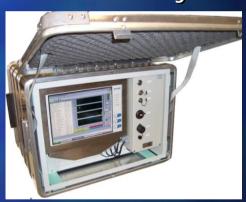
Data Transmission

- Telemetry
 - UMTS/G3
 - Iridium
 - WLAN
- **■** Email
- FTP
- Remote control

Data quality and Database exchange

\$Filename; CDT90_1_Temperatur_20080605.txt										
\$FORMATS										
\$1; Timestamp, Date Time; YYYY.MM.DD hh:mm:ss										
\$2; Temperatur, 🗆 🤇										
\$3; Quality, Flags; Int										
\$4; MeasCount, Cnt; Int										
\$5; MeanTime, Sec; Int										
\$6; Range, MR; Int										
\$7; Minimum, □C; Float										
\$8; Maximum; □C; Float										
\$9; Variance, Units; Float										
\$10; Longitude, Deg: Float										
\$11; Latitude, Deg; Float										
\$DATASETS									ļ	
	Temperatu								Longitude	
		Flags	Cnt	Sec	MR	С	пС	Units	Deg	Deg
05.06.2008 18:32	22,86	16	516	60	0		22,88			
05.06.2008 18.33	22,80	16	515	61	0	22,78				
05.06.2008 18:34	22,82	16	516	61	0	22,81				
05.06.2008 18:35	22,83	16 16	517 515	61 61	0	22,82				
05.06.2008 18:36 05.06.2008 18:37	22,84 22,88	16	515	61	0	22,82				
05.06.2008 18:38	22,00	0	515	61	0	22,86 22,89				
05.06.2008 18:39	22,93	0	514	61	0	22,03				
05.06.2008 18:40	22,94	0	516	61	0	22,93				
05.06.2008 18:41	22,97	0	515	61	0	22,96				
05.06.2008 18:42	22,98	0	514	61	Ö	22,97	22,99			
05.06.2008 18:43	23,00	Ō	516	61	Ö	22,99				
05.06.2008 18:44	22,98	0	515	61	Ō	22,98				
05.06.2008 18:45	23,01	Ō	517	61	Ō	23,00				
05.06.2008 18:46	23,02	0	516	61	Ō	23,02				
05.06.2008 18:47	23,01	0	516	61	0	22,99				
05.06.2008 18:48	22,97	0	516	61	0	22,94				
05.06.2008 18:49	22,91	0	515	61	0	22,90				
<u>05.06</u> 2008 18:50	22 91	Π	516	ค1	Ω	22.89	22 93	0.00020	10 18	

The 4H-Ferrybox family


Standard FerryBox I

FerryBox II

Pocket FerryBox

Stationary ocean-monitoring

Continues measurements of metrological, oceanographic and biological parameters in of the Bay of Paranaguá

Parameter:

T, S, DO, pH, Chl-a, Turbidity,
Inlet Temperature, Pressure, Global Radiation

Stationary ocean-monitoring

Continuous measurements of chemical, oceanographic and biological parameters in the German Bight.
(Biological Institute Helgoland, BAH/AWI, Germany)

Parameter:

T, S, DO, pH, Chl-a, Algae classes, Turbidity, Nutriens (NH₄⁺, P, NO₃⁻/NO₂⁻, Si_xO_y)

Mobile ocean-monitoring

FerryBox as standard monitoring equipment on the Cost guard research vessels RF Zirfaea (Photo.: Rijkswaterstaat, Netherlands)

Parameter:

T, S, DO, pH, Chl-a, Turbidity, inlet temperature, watersampler

Mobile ocean-monitoring

FerryBox as monitoring equipment on the Container Vessel Trans Carrier

(Rijkswaterstaat)

Parameter: T, S, DO, pH, Chl-a, Turbidity, inlet temperature, watersampler

JEVA ENGINEERING

Mobile ocean-monitoring

FerryBox as scientific equipment on the Polarstern Email as Data export

Parameter:

T, S, DO, DCO2, pH, Chl-a, Turbidity, inlet temperature, watersampler, Nutrients (NH₄⁺, P, NO₃⁻/NO₂⁻, Si_xO_y)

Mobile ocean-monitoring

FerryBox as standard monitoring equipment of the institute for coastal research at the GKSS

Parameter:

T, S, DO, pH, Chl-a, Algae classes, Turbidity, Nutrients (NH₄⁺, P, NO₃⁻/NO₂⁻, Si_xO_y) Water sampler

Mobile ocean-monitoring

FerryBox as standard monitoring equipment of the Estonian marine institute Tallinn.

Parameter:

T, S, Chl-a, Turbidity, Inlet Temperature, Nutrients (NO3-/NO2-) Water sampler

Mobile ocean-monitoring

FerryBox as a standard monitoring equipment of the research vessel Endeavour

(marine observation at Cefas)

Parameter:

T, S, DO, Chl-a, Algea activity, Turbidity, pH, Insitu Temperature, Water sampler, debubbler

Mobile ocean-monitoring

FerryBox as a environmental monitoring equipment on the ferry Mv-Caledonian-Isles

(marine observation at SEPA)

Parameter: T, S, DO, Chl-a, Turbidity, Water sampler

New Projects:

FerryBoxes for the research Institutes IFREMER and Roscoff

Installation: End of March

Parameter:

T, S, DO, Chl-a, CDOM, Turbidity, pH, Inlet Temperature, Water sampler

Summary

- The 4H-FerryBox provides solutions to most of the problems associated with long-term insitu monitoring of rivers, estuaries, coastal zones and open sea.
- The modular flow-through system combines high flexibility in the choice of sensor-types and —methods with a fully integrated antifouling concept and the possibility for automatic and remote-controlled operation.

