Automated hyperspectral remote sensing from ships-of-opportunity in the Baltic Sea

progress, system performance, and new services Stefan Simis*, Jenni Attila, Mikko Kervinen (SYKE)

Redundancy is important

Observing phytoplankton biomass from multi-source observations

Platform	Observed layer	Spatio- temporal coverage	Observed quantity	Signal source
Earth Observing Satellites	Variable up to 15 m	Whole system, up to daily	Reflectance bands	Pigment absorption, particle scattering, sun- induced fluorescence
Ferryboxes	3-5 m	Transect 1- 2/week	Fluorescence	In-vivo pigments
Profilers	Column	Point, hourly	Fluorescence	In-vivo pigments

Extrapolating from depth-resolved fixed stations to the satellite field-of-view is compromised when vertical mixing in the sea, atmospheric properties, or the proportionality of the observed quantities are spatially heterogeneous or poorly characterized

Bridging the divide between in-water and remote observations with in-situ remote-sensing reflectance (R_{rs})

*Simis and Olsson 2013, RSE PROTOOL, WaterS, ESA Balmon, **BONUS FerryScope** cost per unit 25kEUR / 20k GBP

Summer 2014:

- 2nd Rflex set installed on MS *Transpaper*
- Optimizing connectivity (delivery usually < 1d)
- Rflex R_{rs} web service configuration

Winter -> 2015

- Implementation in CalValus
- Demonstration products
- Services for matchups, AC confidence, blooms..
- User-driven development

2016

- Operational phase.
- Sentinel-3 launch postponed for the last time

Implementation

FINNMAID

Starboard on M/S Finnmaid (Finnlines)

Rflex:

Water-leaving Radiance (L_t) Sky radiance (L_s) Downwelling irradiance (E_d) L sensors on rotating platform to avoid sun glint

Hyperspectral, 320-950 nm 15-s interval

Matched with flow-through observations in post-processing

Rrs resolved with iterative algorithm (correct surface reflectance) -> poor measurements flagged

*Simis and Olsson 2013, RSE

First period of autonomous use, sanity checks

July-September 2013

- 'Normal' bloom year, some surface accumulations
- Rflex on MS Finnmaid (Helsinki-Travemunde)
- 23025 R_{rs} spectra passed QC
- Q: do we get consistent results?

Checking consistency in R_{rs} with a spectral classification

Baltic Sea Rrs has a conservative shape: dominant CDOM and water absorption leave a green R_{rs} peak

R400<R580>R800

= no anomalies

MARINE RESEARCH CENTRE

R_{rs} vs Ferrybox: surface accumulations

MODIS shows extreme values on 26 July 2013, suggests surface bloom

No enhanced Chl-a fluorescence at ferrybox intake depth (5 m) throughout bloom period -> biomass in shallow layer, or pigments not fluorescing

26 July 2013, MODIS

2014

April 2014 – present

- Main objective: implementing sustained service
- First attempt at spring bloom observations (low sun angles!)
- Rflex on MS Finnmaid and MS Transpaper (> July, with SMHI)

Obs/day for Transpaper significantly lower than for Finnmaid:

- Sensor intercalibration results not yet in Rrs processing
- Lower sun elevation and clear, dark water of Gulf of Bothnia

17

First processing 2014

Quantitative processing 2014

55.5 56.0

Latitude

Finnmaid

54.0 54.5 55.0

2014: PE

56.5 57.0 57.5

0.92

'Fluorescence Line Height' = Rrs(685) – Rrs(675) targets Chl-a absorption and fluorescence maxima

Summer 2014 surface scums in the Northern Baltic Proper and Archipelago Sea

R_{rs} coverage 2014: what we missed

Data access

SYKE Rflex Rrs WFS / WMS are online, user feedback welcome! http://ferryscope.ymparisto.fi/Rflex/

eneral
wfs/General/GetFeature_Filter_Examples/xml/ByBBOX.xml

cwfsiDescribeFeatureType xmlns:vfs="http://www.opengis.net/wfs" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.1.0" service="WFS" xsi:schemaLocation="http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.1.0/wfs.xsd" outputFormat="text/xml; subtype=gml/3.2.1"> c/wfs:DescribeFeatureType>

URL: http://ferryscope.ymparisto.fi:80/Rflex/services/ RflexWFS V send

download response

٠

<rflex:RrsMeasurement gml:id="RFLEX_RRSMEASUREMENT_2320120517130654" xmlns:rflex="www.syke.fi/Rflex"> <rflex:utc>2012-05-17T13:06:54</rflex:utc> <rflex:ship>23</rflex:ship> <rflex:geom> </!--Inlined geometry 'RFLEX_RRSMEASUREMENT_2320120517130654_RFLEX_GEOM'--> <qml:Point qmlid="RFLEX_RRSMEASUREMENT_2320120517130654_RFLEX_GEOM" srsName="urn:ogc:def.crs:EPSG::4326"> <gml:pos>59.922682 24.997448/gml:pos> </gml:Point> </rflex:geom> <rflex:sunelev>40</rflex:sunelev> <rflex:edpar>114.116714</rflex:edpar> <rflex:skyrat400>0.39319268</rflex:skyrat400> <rflex:rrs_1stwl>320.0</rflex:rrs_1stwl> <rflex:rrspitch>3.3</rflex:rrspitch> <rflex:rrs lstwl>953.6</rflex:rrs lstwl> <rflex:rrslen>193.0</rflex:rrslen> <p

Summary

Ship-based R_{rs} provides an interface between remote and in-water (flow-through) observations. Now we can:

- Solve conflicts between data sources e.g. caused by shallow mixing
- Flag surface accumulations, exclude these from RS processing
- Use hyperspectral reflectance spectroscopy to identify pigment absorption signatures (provided sufficient biomass)
- Address atmospheric correction issues solve atmospheric contribution to remotely sensed signal from *in situ* water-leaving reflectance
- Let's build a network! (1) Join FerryScope; (2) Build and Install Rflex;
 (3) Get your data fully processed and matched with EO imagery.
 Let's share!

Have ship? Add Rflex module ->

Now serving: $R_{rs}(\lambda)$ through WFS/WMS on <u>http://ferryscope.ymparisto.fi/Rflex/</u>

Matchups, timeseries, etc: join the FerryScope user base <u>http://www.ferryscope.org/</u>

