

New microLFA modules for on-line measurement of nutrients in ship of convenience application

Dr. Ing. Luca Sanfilippo

User requirements for an on-line chemical analyzer in a Ferrybox

- Long term unattended autonomy
- Compactness
- Low reagents and sample consumption
- Low life-cycle cost
- Excellent reliability
- Easy interface with data-logger
- Low maintenance by non expert users

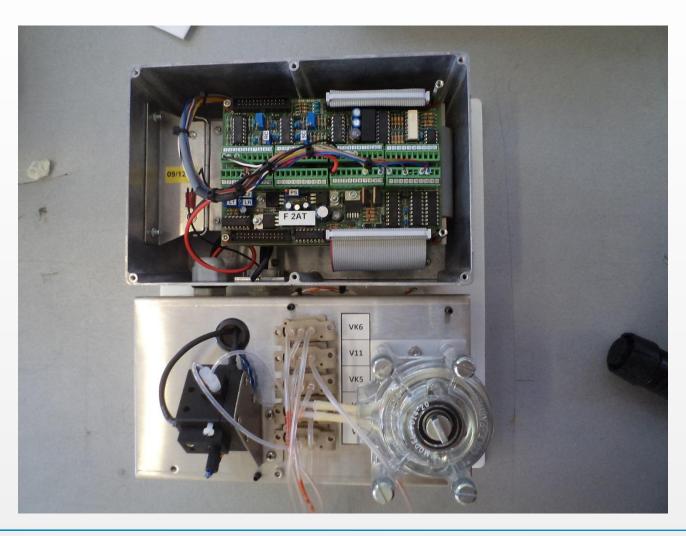
Ferrybox applications with Micromac-1000 analyzers

AWI – BAH (Biologische Anstalt Helgoland) 2005

MUMM (Belgica ship) 2011

Micromac-1000 features and limitations in Ferrybox systems

Features:

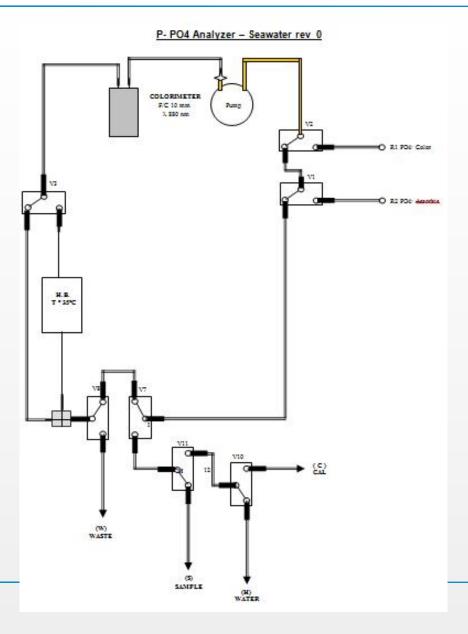

- Unattended long term use
- Low reagents consumption
- Sensitivity for sea water measurements
- Compactness and portability
- Modularity
- 12 Vdc power supply.

Limitations:

- Silicone based not sealed hydraulics
- Limited internal space for reagents solutions
- Hydraulics not directly visible to the user
- Electronics not sealed.

The advance: MicroLFA module

AMS SYSTEA


MicroLFA module

- Very simple hydraulics directly accessible by operator
- Complete separation between hydraulic and sealed electronic
- Suitable to run all nutrients methods already developed and tested on field
- Lower reagents consumption: 60 μL for most of the reagents used
- Fast "plug-in" hydraulic connector allows easy deployment and reagents changeover on board
- Power supply: 12 Vdc, 3 W stand-by, 6 W analysis, max. 1 A
- Very low maintenance
- Suitable for long term deployment.

The micro Loop Flow Reactor

Nutrients analytical methods using microLFA technology

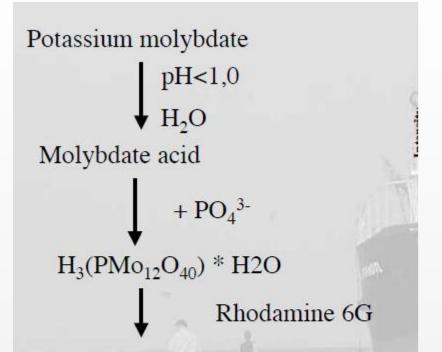
- AMMONIA (12 min.):
 OPA fluorimetric method, 6 ppb
- NITRITE (5 min.): NED-SAA, 1 ppb
- NITRATE + NITRITE (12 min.): UV reduction method + NED-SAA, 5 ppb
- ORTOPHOSPHATE (5 min.):
 Molibdate-Antimony, 3 ppb

8.7	NH₄-N	NO ₂ -N	NO₃-N	PO₄-P
Recovery (%)	96	126	94	109
RSD (%)	22.3	1.2	8.6	4.2
LOD (ppb)	6	1	5	3
LOQ (ppb)	20	3	15	10

http://www.projectwarmer.eu

Analytical procedures for nutrients

	PO ₄ -P [10,11]	NH ₄ -N [9,10]	$(NO_3 + NO_2)-N[9,10]$	NO ₂ -N [9,10]
Filtration	yes	yes	yes	yes
Sampling	90 sec	90 sec	90 sec	90 sec
Sample blank reading	U zu	yes	1850T	
Injection of first reagent	Acid Molybdtate	OPA	DTPA	SAA
Sample blank reading	yes		yes	yes
UV reduction		7222	5 min	
Second reagent injection	Ascorbic acid	U.S. 1.00	SAA	NED
Mixing	yes	yes	yes	yes
Third reagent injection	T		NED	
Temperature conditioning	25 °C*	45 °C, 6 min.	2	
Duration of analysis	5 min	12 min	12 min	5 min
Flow cell	20 mm	10 mm	20 mm	20 mm
Wavelength/ Detection method [9,10,11]	880 nm, Spectrophotometric	370/420nm Fluorometric	525 nm Spectrophotometric	525 nm Spectrophotometric
Range	5-500 μg/L	3-1000 μg/L	10-500 μg/L	2-200 μg/L
Wash cycle	50 sec	50 sec	50 sec	50 sec
Inlet line back wash	(as aus)	(9 444	5 sec, DIC /acid


^{*} if required under low ambient temperature, water sample temperature could be increased to 25 °C

Advanced fluorimetric methods

 PO_4

 NO_2

The nitrite undergoes a diazotization with fluorosceinamine in an acidic medium. After sufficient incubation the reaction is completed by addition of a strong base. The resulting dye is measured fluorometrically (480nm excitation and 520nm emission) and is directly proportional to concentration¹.

¹ Axelrod, H. et al, Anal. Chem., **47**, 922-924 (1975).

Ion association complex molybdophosphate with Rhodamin

→

Oceanology 2006 Kerstin Kröger Quenching
High sensitivity
Fast reaction

MicroLFA: available parameters

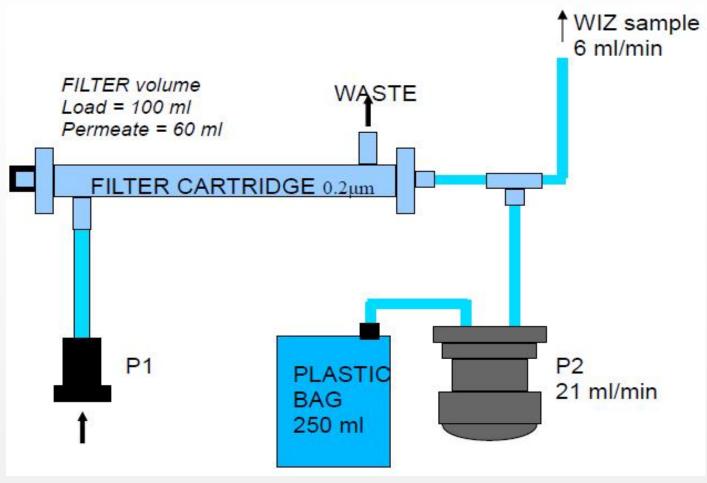
- Nutrients: NH₃, NO₃+NO₂, NO₂ and PO₄
- SiO_2
- Total Phosphorus (measurement time 1 h)
- Total Nitrogen (measurement time 30 min.)
- Metal ions like Cr⁶⁺, Al, Cu, Iron, Zn, Mn
- Urea.

AMS SYSTEA

MicroLFA technical features

- automatic sample blank correction
- automatic washing
- automatic sample dilution allows double scale measurements
- plug-in multi-hydraulic connector available for easy reagents changeover
- compactness and modularity allow easy integration in Ferrybox
- RS-232 protocol compatibility with Micromac-1000 and sondes
- compact dimensions: 270 (H) x 150 (L)x 175 (W) mm, hydraulics / electronics.

Proposed field test under JERICO TransNational Access program



Submitted a proposal to test the MicroLFA modules in the following HZG's facilities:

- Cuxhaven fixed monitoring station at the Elbe river mouth
- Ferrybox system on a regular route.

0.2 microns filtration unit with auto back-wash

Requirements for a chemical analyzer in a Ferrybox system

DONE!

- Y Long term unattended autonomy
- **Y** Compactness
- Y Low reagents and sample consumption
- ★ Low life-cycle cost
- Excellent reliability
- Y Easy interface with data-logger
- Y Low maintenance by non expert users

THANK YOU FOR YOUR KIND ATTENTION