

Spatial Coherence between Ferrybox Fluorescence measurements <u>Philipp Grötsch</u>, Stefan Simis, Marieke Eleveld, Steef Peters

IVM Institute for Environmental Studies

Challenge:

Measurements from *in situ* and remote sensing are not reliable during strong stratification:

- Ferryboxes sample at ~5 m depth
- Remote sensing bio-optical algorithms assume vertically mixed water columns

Hypotheses:

- 1. Within a cyanobacteria bloom, Chlorophyll a (CHLa) and Phycocyanin (PC) fluorescence vary *coherently*, independent of the concentrations.
- 2. This coherence can be spatially resolved with *continuous wavelet transform*.

We show this for a summer bloom in the Baltic Sea.

Ferrybox FI.	R ²
CHLa	0.39
PC	0.76
CHLa, PC	0.82

Seppälä2007: Explained variability of CHLa lab samples during summer bloom 2005 in the Baltic Sea

All cyanobacteria include CHLa pigment. **High %** in *non-fluorescing* PSI. **All** cyanobacteria include PC pigment in *fluorescing* PSII

In a cyanobacteria dominated bloom:

 \rightarrow CHLa fl. present but low \rightarrow CHLa and PC fl. are *varying coherently*

Where on a Ferrybox transect CHLa and PC fl. are varying coherently?

Wavelet Coherence

Fourier Transform

- Decomposes signal in *frequencies*
- Works only on stationary data

Continuous Wavelet Transform

- Decomposes signal in *frequency* AND *space*
- No stationarity assumption

Wavelet Coherence Transform

Measure of *coherence* between two *wavelet transformed* signals

Where and at what scales are two signals *varying coherently*

Case Study: Baltic Sea Summer Bloom 2005 (June, July)

- 10 Ferrybox transects (East of Gotland)
 - Travemünde (Germany) Helsinki (Finland)
 - CHLa, PC fluorescence, turbidity, temperature, salinity
 - Measurement depth: 5 m
 - Described in Seppälä2007
- 10 MERIS FR scenes (processed with WeW/FUB)

VM Institute for

Environmental Studies

ECMWF interim reanalysis: wind speed, SST

9/19

Meteorological Situation

Remote Sensing and Ferrybox Measurements

Water Insight

Wavelet Coherence: CHLa, PC fluorescence

Synopsis

Synopsis

Summary

- Wavelet coherence between CHLa and PC fluorescence is calculated
- Coherence is high in cyanobacteria dominated transect-sections
- Stratification situation can be estimated

Direct Applications

- Water samples from <u>cyanobacteria dominated sections</u> can be flagged for the calibration of CHLa fluorescence.
- <u>Stratified sections</u> can be dealt with separately during the validation with remote sensing data

Open Questions

- Distribution of Ferrybox CHLa and PC fl. is not Gaussian. Typical tests for significance of wavelet coherence rely on Gaussian distribution.
- What can the scale distribution of the wavelet coherence tell us?

Acknowledgements

Wavelet Coherence: CHLa, PC fluorescence

Vertical Distribution of the Water Column

