The contribution of FerryBox measurements to estimates of productivity in the North Sea: Challenges, uncertainties and benefits

Michael Haller and Wilhelm Petersen

Institute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG)

8-9 September 2014, Tallinn

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Motivation

- Marginal seas only 7% of global oceans
- play important role in biogeochemical cycle of carbon, sources and sinks of atmospheric CO_2
- rising atmospheric CO₂ levels alter carbon cycle in ۲ oceans \rightarrow ocean acidification
- high riverine input of nutrients in coastal oceans •
 - \rightarrow algae blooms, eutrophication

Which role plays the North Sea?

Quantification of

Oxygen air-sea fluxes:

- anomaly of oxygen concentration equilibrium drives oxygen air-sea flux
- oxygen fluxes are approximation of new ۰ production in shoaling period
- Seasonal Net Outgassing (SNB) is a measure for Net Community Production (NCP) (Bargeron et al. 2006)

Carbon air-sea fluxes:

Euphotic zone

- are a measure for oceanic uptake of atmospheric carbon dioxide
- understanding and quantifying the carbon fluxes in continental shelf seas and coastal areas
- distinguish different influences on carbon flux variability

exchange Organic matter + O2 $CO_2 + H_2O + nutrients$ Respiration Particle

DOM

Vertical mixing

Nutrients

Zentrum für Material- und Küstenforschung

transport

> Air-sea flux of gases expressed by gas concentration anomaly and gas exchange velocity:

$$F = k_w \cdot \Delta O_2$$

- Solution Gas concentration anomaly for oxygen, ΔO_2 , is the difference of observed concentration and saturation concentration
- Solution Gas concentration anomaly for carbon dioxide, ΔCO_2 is the difference between partial pressure of oceanic carbon dioxide and atmospheric CO_2
- \succ k_w is parameterized by wind speed (in 10 m height) and the dimensionless Schmidt number Sc.

$$Sc = \frac{\mu}{D} = A - bt + Ct^2 - Dt^3$$

 μ is kinematic viscocity of water, D is diffusion coefficient of the gas

General parameterization term:

$$k_w = a \cdot Sc^n \cdot U^b$$

F.e. Wanninkhof, 1992:

$$k_w = 0.31 \cdot (\frac{Sc}{660})^{-1/2} \cdot U^2$$

Challenges: Temperature effect on pCO₂

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

- Various effects on changes in pCO₂, e.g. biological effects, water temperature, advection, mixing, …
- To remove temperature effects, approach of Takahashi et al. (2002) is commonly used

$$pCO_{2}(const T) = (pCO_{2})_{obs} \cdot \exp\left[\frac{\partial \ln pCO_{2}}{\partial T}(T_{mean} - T_{obs})\right]$$
$$pCO_{2}(T_{obs}) = (pCO_{2})_{mean} \cdot \exp\left[\frac{\partial \ln pCO_{2}}{\partial T}(T_{obs} - T_{mean})\right]$$

 $\frac{\partial \ln p C O_2}{\partial T} = 0.0423^{\circ} C^{-1}$ Takahashi et al. (1993)

- T/B index: ratio of amplitudes of pCO₂(T_{obs}) and of pCO₂(const T)
- hints at biological (T/B < 1) or temperature influence (T/B > 1)

Data sets

FerryBox data of TorDania 04/2011 - 04/2012 (CuxImm route)

- Dissolved oxygen (DO)
- $\circ xCO_2$
- o Water temperature
- o Salinity
- ECMW ERA-Interim reanalysis wind speed data,
 - \circ 0.75° grid, 6-hourly
- > Atmospheric CO_2 from Mauna Loa Obs. (Hawaii)

Helmholtz-Zentrum

Geesthacht

Zentrum für Material- und Küstenforschung

Uncertainties: Evaluation of FerryBox data

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

- Comparison of FerryBox water probes:
 - Underestimation of optode dissolved oxygen concentration by 10-15%
 - o Evaluation every 1-2 months, in harbour
 - o FerryBox Salinity measurements in good agreement to lab evaluation
- > Water temperature comparison FerryBox and MARNET:
 - FerryBox offset accounts to ≈ 0.5 K
 - \rightarrow Heating inside of FerryBox system

Water temperature

Comparison FB and MARNET "Deutsche Bucht" 2007-2011

Salinity

Benefits: Oxygen flux estimates CuxImm 2011-2012

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Benefits: xCO₂ and CO₂ flux estimates CuxImm 2011

Benefits: Carbon flux estimates CuxImm 2011

Benefits: Effects on Carbon fluxes

T/B ratio: biological (T/B < 1) or temperature influence (T/B > 1)

Benefits: Oxygen and Carbon fluxes

Different parameterization schemes: Results

Differences between highest and lowest between 1 and 3 mol/m².

Conclusions

Challenges:

- Measuring data, calculation of fluxes
- Effects on carbon flux variability
- Data gaps prevent analysis of annual variability so far

Uncertainties:

- Which parameterisation scheme is best choice?
- Data set evaluation

Benefits:

- Estimation of oxygen and carbon fluxes for FerryBox transect
- Spatial and temporal features of fluxes are determined
- Biological and temperature effects can be assessed (T/B ratio)

- Datasets over longer timescale
 - $\circ~$ more than one seasonal cycle \rightarrow annual variability (e.g. Petersen et al., 2011 and

others)

- Calculations for other Ferrybox routes
 - o long timescales
 - o continuous data sets
- Quantification of characteristic parameters: SNO, New production, Net Community

Production (NCP)

Comparison to ecosystem model results

Thank you for your attention!

Zentrum für Material- und Küstenforschung

Redfield ratio (Redfield et al., 1963): atomic ratio of carbon, nitrogen and phosphorus found in phytoplankton and throughout the deep oceans. This empirically developed ratio is found to be $P:N:C:-O_2 = 1:16:106:138$. Valid for Atlantic Ocean.

Revised Redfield ratio (Takahashi et al., 1985):

	Number of Stations	σ_{θ}	Р	N	CO2	(O ₂ - 2N)	-O ₂	CaCO ₃
Redfield ratio*	—	_	1	16	106	106	138	—
North Atlantic	32	27.00	1	17.6 ± 0.6	97 ± 9	130 ± 6	165 ± 7	15 ± 4
	57	27.20	1	16.8 ± 0.5	88 ± 6	139 ± 6	173 ± 6	8 ± 3
South Atlantic	16	27.00	1	16.7 ± 0.7	102 ± 7	131 ± 6	165 ± 6	8 ± 2
	14	27.20	1	16.7 ± 1.2	95 ± 10	150 ± 2	182 ± 9	8 ± 4
Atlantic mean	119	27/27.2	1	17. 0 ± 0.4	96 <u>+</u> 6	138 ± 9	171 ± 8	10 ± 4
South Indian	22	27.00	1	152 ± 0.6	112 ± 6	138 ± 7	169 + 8	15 + 4
	21	27.20	i	14.5 ± 0.5	125 ± 7	145 ± 5	174 ± 6	19 ± 6
Indian mean	43	27/27.2	1	14.9 ± 0.4	119 ± 5	142 ± 5	172 ± 5	17 ± 4
Atlantic and Indian mean	162	27/27.2	1	16.3 ± 1.1	103 ± 14	140 ± 8	172 ± 7	12 ± 5

TABLE 5. Molecular Ratio of P, N, C, O₂, and CaCO₃ Changes in the Atlantic and Indian Oceans

For the oxidation of nitrogen a reaction $NH_3 + 2O_2 = NO_3^- + H_2O + H^+$ (i.e., $N : O_2 = 1 : 2$) is assumed.

*Utilization by plankton after Redfield et al. [1963].

Takahashi et al. (1985)

HZG FerryBox routes

Zentrum für Material- und Küstenforschung

- Operation of currently three routes:
 - Helgoland-Büsum / Helgoland-Cuxhaven: "Funny Girl"
 - England-Norway-Belgium: "LysBris"
 - o Rotterdam-Immingham: "Hafnia Seaways"
 - Former route: Cuxhaven-Immingham "TorDania" (until 04/2012)
 - coming soon: re-activated Cuxhaven-Immingham route "Selandia" (starting 2014/2015)

HZG – FerryBox routes:

- Lysbris
- Funny Girl
- Hafnia Seaways

FerryBox data sets

Water temperature

Salinity

19

- Transect data of Tor Dania: every 2-3 days a data set at one point of the transect
- Create grid of 0.05°E (x-axis) x 7 days (y-axis)
- Interpolate model wind data on that grid

Uncertainties: Parameterization scheme solutions

Parameterisation schemes for exchange velocity of air-sea flux of oxygen in dependance of wind speed U_{10} :

W-92: Wanninkhof, 1992:

$$k_w = 0.31 \cdot (\frac{SC}{660})^{-1/2} \cdot U^2$$

WM-99: Wanninkhof & McGillis, 1999: $k_w = 0.0283 \cdot u^3 \cdot (\frac{Sc}{660})^{-1/2}$ N-00: Nightingale, 2000: $k_w = (0.222u^2 + 0.333u)(\frac{Sc}{660})^{-1/2}$ LM-86: Liss & Merlivat, 1986: $k_w = 0.17u \cdot (\frac{Sc}{660})^{-2/3}$ $k_w = (2.85u - 9.65) \cdot (\frac{Sc}{660})^{-1/2}$

$$k_w = (5.9u - 49.3) \cdot (\frac{sc}{660})^{-1/2}$$

W-05: Woolf, 2005:

$$k_w = (56.52\sqrt{C_d}u + 2.5 \cdot 10^{-4}u^{4.04}) \cdot (\frac{Sc}{660})^{-1/2}$$

S-07: Sweeney et al., 2007:

$$k_w = 0.27u \cdot \left(\frac{Sc}{660}\right)^{-1/2} \tag{21}$$

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung